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Abstract-A two-component model of the natural convection of gas/vapour mixtures is described in 
which the temperature dependence of mixture properties is incorporated. Attention is focused on a two- 
dimensional packed bed with isothermal top and bottom plates and insulated side walls ; nitrogen/water 
vapour and helium/water vapour mixtures are considered. When the mixture density is a monotonic 
function of temperature and the temperature difference is small (Z lO”C), predicted values of the critical 
Rayleigh number (Ru,), modes of convection, flow and temperature distribution agreed well (l-2 percent 
in Ra,) with corresponding values derived from an analogous single-component model based on properties 
evaluated at the mean temperature; the increasing difference between such values as the temperature 

difference increases is also shown. 

INTRODUCTION 

CLOSE [I] proposed a method for storing thermal 
energy in packed beds in which a fluid mixture with 
one condensing component is used. In a typical 
arrangement, vapour is generated by heating a liquid 
pool at the base of the container and the amount of 
non-condensing gas is adjusted to maintain the system 
at atmospheric pressure ; heat is extracted at the top 
of the container. Transport of heat is enhanced by 
natural convection but the effect is much greater for a 
gas/vapour mixture in which the vapour is continually 
condensing and re-evaporating than it is for the gas 
alone. Close [l] demonstrated this by using an analo- 
gous single-component model for the gas/vapour 
mixture in which the property-dependent coefficients 
are evaluated at the mean temperature. However, 
although this concept has been confirmed by experi- 
mental data [2], no theoretical study of the flow mech- 
anics operating or of the limitations of the model is 
available. Natural convection of gas and vapour may 
also occur in the underground heating of soils (e.g. as 
an aid to agriculture), or may be useful in the design 
of thermal diodes (conducting at night but insulating 

by day). 
In this paper, a two-component model is developed 

which takes account of property variations of the 
mixture but which ignores mass diffusion of the gas 
and vapour components. To render the problem 
amenable to analysis, the model is extrapolated to 
near zero flow conditions and the “onset” criteria for 
convection, and the corresponding flow and tem- 
perature patterns, are then compared with those 
derived from the analogous single-component model 
for nitrogen/water vapour and helium/water vapour 
mixtures. 

THE GOVERNING EQUATIONS 

Cheng [3] derived the equations governing con- 
vective heat transfer in a porous medium saturated 
with a liquid and its vapour under assumptions of 
local thermodynamic equilibrium. A similar analysis 
can be applied, when the vapour is replaced by a 
mixture of vapour and a non-condensing gas, to 
obtain the following equations expressing con- 
servation of mass and energy for steady flow : 

V.(pyu) =-V-J+& (1) 

V.(/QU) = V*J, (2) 

V * (PIU,) = -6 (3) 

V*(puh+p,u,h,) = kV2T-V*(h,-&)J, (4) 

where 

J = -PDV(P,IP) = PDVCPJP). (5) 

Here p, h, u, P denote density, specific enthalpy, 
Darcy velocity and pressure of the gas/vapour mix- 
ture; when these variables appear with subscripts v, 
d or 1, they then refer to the vapour, non-condensing 
gas and liquid, respectively. The temperature T is the 
same at a given point in the solid matrix, liquid phase 
and gas mixture. Like p, densities pV and p,, are defined 
in terms of mass per unit volume of gas mixture so 
that 

P = PvfPd (6) 

and 

ph = p&, +Pdhd. (7) 

The source term Fin equations (1) and (3) represents 
the mass flux of vapour/unit volume of the porous 
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NOMENCLATURE 

cp, cpvr cpd, cpi specific heat of gaslvapour 
mixture, vapour, non-condensing gas and 
liquid, respectively 

c* effective specific heat in analogous single- 
component model 

D diffusivity of gas/vapour mixture 
f, -f4 functions defined by equation (26) 
F mass flux of vapour generated locally per 

unit volume 
9 gravitational acceleration 
G ~mensionless parameter defined by 

equation (25) 
h, h,, hd, h, specific enthaIpy of gas/vapour 

mixture, vapour, non-condensing gas and 
liquid, respectively 

hv, = h, - h,, latent heat of vaporisation of 
condensing component 

H height of packed bed 
J binary diffusion ff ux in gas/~apour 

mixture 
k thermal conductivity of packed bed 

saturated with gas, vapour and liquid 
K, K, permeability of porous medium to 

gas/vapour mixture and liquid, 
respectively 

L width of packed bed 
m mass fraction (pV/pd) of ccmdensing 

component in gasjvapour mixture relative 
to the non-condensing component 

M molecular weight 
n horizontal wave number 
P, P,, Pdr P, pressure of gas/vapour mixture, 

vapour, non-condensing gas and liquid, 
respectively 

AP capillary pressure P-P, 
R universal gas constant 
Ra Rayleigh number [defined by equation 

f32)i 

S liquid saturation 
T absolute temperature 
AT = T,--T,, 

u, u, velocity of gas/vapour mixture and 
liquid, respectively 

(u, w), (u,, w,) components of u and u,, 
respectively 

W, = pp,w\/KpZg, dimensionless vertical 
liquid velocity 

(x, z) coordinates as in Fig. I 
(X, z) dimensionless coordinates (x, s)/H 
i unit vector in positive z direction. 

Greek symbols 

% = nnH/L 
0 dimensionless temperature perturbation 

T-‘/AT 
p, p1 viscosity of gas/vapour mixture and 

liquid, respectively 

PV PY% Pd> PI density of gas/vapour mixture, 
vapour, non-condensing gas and liquid, 
respectively 

li reference mixture density 
Y dimensionless stream function 

/N’/KHg~*. 

Subscripts 
V vapour 
1 liquid 
d non-condensing gas 
0 unperturbed (basic) state 
b bottom plate 
U top plate 
c critical 
n mode of eigenvalue or eigenvector. 

Superscript 
, perturbation from basic state. 

medium crossing microscopic liquid-vapour inter- 
faces during condensation or evaporation, J is the 
binary diffusion flux in the gas/vapour mixture for 
which D denotes the diffusivity, and k is the effective 
thermal conductivity (assumed constant) of the porous 
medium saturated with liquid and the gas/ 
vapour mixture. In the thermal energy equation (4), 
viscous dissipation and pressure variation effects have 
been ignored (these are usually important only at very 
high flow velocities (see, e.g. Knudsen and Katz [4]), 
and the additional last term represents the heat trans- 
fer due to interdiffusion of the gas and vapour. 

The flow of the gas/vapour mixture is assumed to 
satisfy Darcy’s Law 

II = - Z(vP+pge), (8) 

where p denotes viscosity, g is the acceleration due to 
gravity, i! is a unit vector directed vertically upwards 
and K is the permeability of the porous medium. 
Similarly, Darcy’s Law for the liquid flow is 

u, = - ?(VP, +p$$)), @a> 

where P, differs from P owing to interfacial tension 
effects. Both the effective permeability K, and the 
capihary pressure AP = P-P, depend empirically on 
the local liquid saturation (5’) in the porous medium. 
Following Close [l], the gas flow properties of the 
porous medium are assumed to be unaffected by the 
flow of liquid. Thus iy in equation (8) takes its satu- 
rated value and the liquid is assumed to occupy only 
a small fraction of the void space. [Close (personal 
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communication) has observed the liquid occurring as 
a thin layer coating the packing material when the gas 
consists of air and water vapour or air and the ethyl 
alcohol azeotrope.] Capillary and gravitational effects 
are expected to be the important factors driving the 
flow of liquid, with gas pressure gradients having little 
influence. Furthermore, we ignore horizontal vari- 
ations in liquid saturation and, like Close, assume 
that the liquid only flows vertically. Thus we replace 
equation (9a) by 

- II, = w,z, (9b) 

where the unknown w, is to be determined without 
specifying the functions AP(s) and K,(S). However, 
it is not strictly necessary to assume a vertical liquid 
velocity since an analysis which incorporates equation 
(9a) can be developed; of course the functions AP(s) 
and K,(S) must then be given. 

The mass balance equations (l-3), together with 
relations (6) and (7) reduce the energy equation (4) 
to 

p,u~Vh,+p,u*Vh,+p,u, *V/l, 

= kV*T-(h,-h,)V.(pu)-J.V(h,-h,). (10) 

Since we are ignoring pressure variations in the 
energy equation the specific enthalpies h,, hd and hl 
are assumed to depend linearly on temperature with 
slopes (specific heats) cPv, cpd and cplr respectively. This 
is usually a good approximation (e.g. Knudsen and 
Katz [4], p. 9), but for ideal gases the linear depen- 
dence is exact. The energy equation then becomes 

= kV2T-h,,V*(pu)-(c,,-+)J*VT, (11) 

where cP, the specific heat of the gas mixture, is defined 

by 

and 

PC, = Pvcpv +Pdc,d (12) 

h,, = h, -h, (13) 

is the latent heat of vaporisation, the quantities p, cP 
and h,, depending on temperature. The last term in 
equation (1 l), associated with the enthalpy transfer 
by gas-vapour interdiffusion, appears in the literature 
of laminar film condensation (e.g. Minkowycz and 
Sparrow [5]) ; the second last term, representing the 
enthalpy transfer due to vapour formation, occurs 
analogously in a study of two-phase convection [Schu- 
bert and Straus [6] ; first term of their equation (18)]. 

Following Close [l], we now assume that the gas 
and the vapour behave as ideal gases ; thus 

P, = p,RT/M,, Pd = P-P, = pdRT/A4,, (14) 

with T measured in degrees absolute, and we have 
Close’s equations (13) and (14) : 

P( 1 +m)M,M, 

’ = RT(M, +mM,) (15) 

and 

M”PV 
m = M,(P- P,)’ 

where m = pv/pd. Continuing, we suppose that the 
vapour and the liquid at any point are in equilibrium, 
the partial pressure P, of the vapour being related to 
temperature by the ClausiusClapeyron equation 

dp,_ M,P,h,, 
dT RT2 (17) 

Like Close, we assume that the properties of the gas/ 
vapour mixture are independent of the pressure vari- 
ations within it; thus pv, pd (and hence p, m) are 
regarded as functions of T alone with a constant value 
(1 atmosphere) assigned to the pressure P. 

If we now take the liquid to be incompressible, 
and use the above property/temperature relationships 
then, in principle, equations (l-3) (5) (8) (9b) and 
(1 l), together with appropriate boundary conditions, 
are sufficient to determine the system. However, it is 
convenient to make a further simplification : diffusion 
is assumed to contribute little to the mass flux of 
the non-condensing gas or the vapour, therefore we 
neglect J relative to pdu and p,u in which case J dis- 
appears not only from the mass balance equations (1) 
and (2) but also from the reduced energy equation 
(10). In an air/water vapour mixture, for example, 
diffusion velocities (J/p,, J/p,) typically range in value 
up to about 5 cm/h (based on D = 0.04 cmZ/s and 
]VT] = 50”C/m) which we regard as small. Only when 
the temperature is very close to the boiling point does 
the air diffusion velocity begin to increase rapidly (e.g. 
3&60 cm/h when T = 9%99°C). 

Collecting the governing equations together into a 
simplified set based on our assumptions, we have 

V.(pu+p,w,i) = 0 [adding equations (1_3)], (18a) 

v ’ (Pdu) = 0, 18b) 

pc,u.VT+p,c,,w,2.VT = kV2T-h,,V.(pu), (18~) 

and 

u = - F(VP+pgi) [equation(8)] (18d) 

to solve for the unknowns u, w,, T and P. 
We now restrict our attention to two-dimensional 

flow in a container with rectangular cross-section 
(height H, width L) and use rectangular coordinates 
(x, z) as shown in Fig. 1. The top and bottom plates 
are maintained at constant temperatures T, and T,, 
respectively, and the side walls are insulated. The ver- 
tical mass flux of the gas/vapour mixture is zero at the 
top and bottom; that of the liquid is zero at the top 
but, in general, is non-zero locally (in a manner to be 
determined) at the liquid pool at the base, although 
the average mass flux there must be zero. The bound- 
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FIG. 1. Schematic representation of the two-dimensional 
packed bed. 

ary conditions are therefore 

T=T,, w=w,=O on z==H, 

T=T,,, w=O on z=O, and 

aTpx= u=O on X= 0 and X= L, 

where u and w denote the components of u in the x 
and z directions, respectively. 

To render the solution of equations (18a-d) amen- 
able to analysis, we now extrapolate to near zero 
flow and investigate the “onset” of convection in the 
container using a linear stability analysis by con- 
sidering small perturbations from the simple conduc- 
tion solution [u = w, = 0, and T = Tb- (T,- T&/H]. 

Of course, a proper analysis at very low flows must 
include mass diffusion effects, since diffusive and con- 
vective fluxes are then of similar order, in which case 
there is not even a stagnant state since small liquid and 
gas flows must occur to balance the mass diffusion. 
However, it is our intention to compare the extrapo- 
lated perturbation solution with that corresponding 
to the equivalent single-component model. In both 
cases, mass diffusion is ignored (Close [I, 21 retains 
such a term in the energy equation but a good fit with 
the data can be achieved without it), so its absence 
should not affect a discussion which compares the two 
models. Furthermore, the flow mechanisms high- 
lighted by the analysis of this paper should be the 
same as those acting at much larger velocities ; only 
the details will be different. Finally, the perturbation 
solution is the first term of an expansion (based on 
the method of Palm et al. [7]) which is valid for finite 
amplitude Aows for which ignoring mass diffusion is 
a much better approximation. 

THE LINEAR&ED PROBLEM 

We now follow the usual procedure for a stability 
analysis and set 

T = To + T’, (u, w) = (d, w’), w, = w;, 

P- P,fP’, P = p*+P’, 

where the primed variables are small perturbations 
from the pure conduction solution which, in turn, is 
signified by the subscript ‘0’. When these forms are 

substituted into equations (18a-d), with density per- 
turbations approximated to first order [p’ = (dp,/ 
dT)T’] and the products of perturbations ignored, we 
obtain 

v.~~u’+~,w~~) = 0, (19a) 

V = (Pd”U’) = 0, (19b) 

= kV’T’-h,,(T,)V.(p,u’), (19~) 

and 

where p0 and pdo are functions of To and hence z, 
independent of x. Eliminating P’ from equation (19d) 
gives 

and using equation (19b) together with the relation 

Pa = Pdo(l+%h 

we can show that 

V*(p,u’) = PdyW~~ 2. (21) 

Equation (19b) is satisfied by defining a stream func- 
tion VI’ where 

lw’ ay 
PdoU’ = x, pdow’ = - ax’ (22) 

Equations (20-22) reduce (19a-d) to 

d2Y a9 
--y + 

1 dpdo dT, d’I” ax azz---~----- 
&o dT dZ dZ 

K 
= ;p”” ggg. (23c) 

It is convenient to make equations (23a-c) non- 
dimensional by setting 

(X z) = GG 4/H, t’ = T/AT, 

Y = ~Y’~KHgj7z, W, = ~p,w;/K$g, 

where j? is a reference mixture density and AT = 
T,-- T,. After noting, in addition, that dT,/dz = 
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-AT/H, equations (23a-c) become 

g+g=c 
[ 
f,(zg- w, 1 , 

aw ay 
w = -f*(z>,,, 

and 

where 

and 

(244 

(24b) 

(24~) 

(25) 

(26a) 

(26b) 

(26~) 

(26d) 

The boundary conditions, in terms of the dimen- 
sionless variables, are 

e=Y=W,=OonZ=l, 

O=Y=O on Z=O, 

aw, ae 
====Y=O on X=0 and X=L/H. 

Thus 0, Y and W, may be expressed as 

e = f e,(z)cosa.X, 
n=l 

(274 

and 

Y = f Y,(Z) sin cr,X, 
“= I 

(27b) 

w, = z w,,(z)cosu, x, (27~) 
“= I 

where a, = naH/L. Substituting equations (27ac) 
into (24a-c) yields the following system of ordinary 
differential equations for e,,, Y,, and W,,, : 

0” -a,‘@, = G(cr, f,‘E’,, - W,,) (28a) 

Win = -LY, f2Y, G’8b) 

9,+f,\k,-a,2Y, = -~~,f,8,, (28~) 

where “.” denotes differentiation with respect to Z. 
Together with the boundary conditions, 

e,(o) = e,(l) = 0, 

Y,(O) = Y”(1) = 0, 

W,,(l) = 0, 

equations (28a-c) constitute an eigenvalue problem 
for G, given the ratio L/H, top and bottom tem- 
peratures T,, and Tb, and the horizontal wave number 

n. The value of n which achieves the smallest (criti- 
cal) value of G defines the predicted onset mode of 
convection. 

The above eigenvalue problem can be solved 

routinely by numerical methods. The derivatives in 
equations (28ac) are approximated by central finite 
differences and the resulting system of linear algebraic 

equations solved for the smallest positive eigenvalue 
G together with its eigenvectors. In equations (28b), 
I@,,, is approximated by using adjacent mesh points, 
with the right side of the equation being evaluated at 
the mid point to ensure a conservative form. 

THE EFFECTIVE SINGLE-COMPONENT 

MODEL 

To transform the energy equation into a form anal- 

ogous to that for convection of a single gas, Close [l] 
effectively neglects the second term of equation (18~). 
Equation (18~) then reduces to 

since 

p,c*u*VT = kV2T, (2% 

V.@u) = V*(p,u) = V*(mp,u) = pdu*Vm 

[using equation (18b)]. Here 

c* = (1 + m)c, + h,,dm/d T (30) 

is the effective specific heat. The coefficients of equa- 
tion (29) are the same as those of Close’s corre- 
sponding equation (9) except that mass diffusion has 
been omitted. 

Equations (18b), (18d) and (29) describe the effec- 

tive single-component model with constant values 
being taken for pdr c* and dp/dT (corresponding to 
standard assumptions for natural convection of a 
single fluid, see, e.g. Combarnous and Bories [S]). A 
dimensional analysis then yields the familiar Rayleigh 
number. 

Ra = d-&W-) (~cic*)KATff 
h 

(31) 

and the known results for this problem can be applied. 
Of course Ra is really temperature-dependent and in 
this paper we determine critical values of Ra (evalu- 

ated at the unperturbed state and denoted by Ra,) as 
functions of vertical position z from critical G values 

(derived according to Section 3) where, from equa- 
tions (25) and (31) 

CAT dp 
RR= -___ -2 Pd FTi 

CplP 

these are then compared with the critical Rayleigh 
number based on constant properties (47c2, when 
L/H = 1, see, e.g. Combarnous and Bories [S]). The 
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FIG. 2. Density variation with temperature of nitrogen/water 
vapour and helium/water vapour mixtures. 

corresponding flow and temperature patterns are also 
compared. 

COMPARISON OF TWO-COMPONENT AND 
SINGLE-COMPONENT MODELS 

Most of the results which follow are based on an 
aspect ratio L/H = 1. Specific heat data presented 
in ref. [9] are used and calculated enthalpies and 
pressures for water vapour are checked against tabu- 
lated values (see e.g. Wark [lo]). 

We now consider NJwater vapour and He/water 
vapour mixtures in turn. The mixture densities p(T) 
for each case are shown in Fig. 2. Note that, although 
pd and pV respectively decrease and increase with 
increasing 7’, p decreases monotonically in the N, case 
but falls to a minimum at T x 14°C before increasing 
in the He case. The minimum in the density variation 
(corresponding to the neutral buoyancy temperature 
described in Ref. [l]) of the He/water vapour mixture 
occurs because the molecular weight of He is lower 
than that of Hz0 and, with increasing temperature, 
the mass fraction of the heavier component (H,O) 
increases. 

In Fig. 3, the variation in Ra, with height z for 
NJwater vapour in the two-component (TC) model 
is shown together with the Ra, value (47~‘) arising from 
the single-component (SC) model based on the mean 
temperature properties (at z/H = 0.5). As was hoped, 
the value of Ra, predicted by the TC model at the 
mean temperature approaches 47c2 as T, approaches 
Tb. When Tb = 90°C and T, = 8O”C, the percentage 
difference in these Ra, values is about 2% ; however, 
note the importance of basing the constant property 
SC model specifically on the mean temperature. 

Figures 4 and 5 show contours of the stream func- 
tion, temperature perturbation and liquid velocity for 
an N,/water vapour mixture and compares results for 
the SC and TC models. The temperature perturbation 
is positive or negative as the gas/vapour mixture flows 

up (heat is convected from the hot surface z = 0) or 
down, respectively. Under stagnant conditions, grav- 
ity balances the upwards capillary suction but, when 
the gas/vapour mixture flows upwards, condensation 
of vapour increases the liquid fraction and so reduces 
capillary suction; the liquid then flows down. The 
opposite occurs when the gas/vapour mixture flows 
downwards. 

For the smaller AT value (Tb = 9O”C, T, = SO”C), 
the stream functions shown in Fig. 4(a) for the SC 
and TC models are almost indistinguishable, whereas 
the corresponding differences in the temperature per- 
turbation [Fig. 4(b)], resulting from the absence of the 
second term of equation (18~) from the SC model, are 
more pronounced. As was expected, all differences 
become exaggerated for the larger AT value in Figs. 
5(a, b) (Tb = 9O”C, T, = ZO’C). Whereas the tem- 
perature perturbation for the SC model exhibits a 
vertically symmetric pattern, that for the TC model is 
skewed towards the base. This can most easily be seen 
in terms of the SC model with temperature-dependent 
coeticients. From equation (29), the vertical con- 
vective heat flux is p,c*wT which, from equation (22), 
is -c*TLW’/ax. If we now ignore SC-TC differences 

100 

90 

0 
0 0.4 08 

zlH 

FIG. 3. Criticaf Rayieigh number for nitrogen/water vapour 
derived from the two-component model as a function of 
height (z) when Tb = 90°C and L/H = 1 for various T, 
values. The cross marks the critical value (479) derived from 
a single-component model in which mixture properties are 

evaluated at the mean temperature. 
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FIG. 4. (a) Stream function, (b) temperature perturbation, (c) FIG. 5. (a) Stream function, (b) temperature perturbation, (c) 
(vertical) liquid velocity for onset mode of a nitrogen/water (vertical) liquid velocity for onset mode of a nitrogen/water 
vapour mixture when Tb = 9O”C, T, = 80°C and L/H = I. vapour mixture when Tb = 9O”C, T, = 20°C and L/H = 1. 

Solid lines correspond to the two-component model and Solid lines correspond to the two-component model and 
dashed lines to the analogous single-component model. In dashed lines to the analogous single-component model. In 
(b) and {c), contour values on the left and right are of (b) and (c), contour values on the left and right are of 

opposite sign. opposite sign. 
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in PY/ax and observe that C* [defined by equation 
(30)] is greater at the bottom than at the top then, 
compared with the constant coefficient SC model, low 
values of 2” are effectively convected more rapidly to 
the bottom and high values less rapidly to the top ; 
this accounts for the larger temperature perturbation 
at the bottom which, in turn, accounts for the reduced 
vertical extent of the circulation in Fig. S(a). 

A comparison of Figs. 4(c) and 5(c) shows that, for 
given Tb, the (vertical) liquid velocity decreases as T, 
decreases. In that case, a given temperature, and hence 
the corresponding condensation of vapour, occurs 
lower in the container. However, at lower z values the 
difference between the gravitational force and capil- 
lary suction is less ; liquid velocities are therefore 
smalier. 

For the He/water vapour mixture, p increases with 
T for T > 14°C and in this region circumstances are 
reversed. For convection to occur, the hot plate must 
now be at the top ; the temperature perturbation is 
then negative or positive and the liquid rises or falls 
as the gas/vapour mixture rises or falls. However, it 
may be necessary to superimpose on the liquid flows 
described above a small downward flow (perhaps 

0 
00 04. 08 

Z/H 
FIG. 6. Critical Rayleigh number for helium/water vapour 
derived from the two-component model as a function of 
height (z) when T, = 90°C and L/H = 1 for various Ts 
values The cross marks the critical value (4~~) derived from 
a single-component model in which mixture properties are 

evaluated at the mean temperature. 

originating from a liquid-saturated sponge or injec- 
tion spray at the top plate), otherwise the surface of 
the packing material can dry out under these 
(inverted) conditions (Close; personal communi- 
cation). From Fig. 6, Ra, predicted by the TC model 
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FIG. 7. (a) Stream function, (b) temperature ~rturbation, 
(c) (vertical) liquid velocity for onset mode of a heli~/water 
vapour mixture when T, = 9O”C, T,, = 80°C and L/H = 1. 
Solid lines correspond to the two-component model and 
dashed lines to the analogous single-component model. In 
(b) and (c), contour values on the left and right are of 

opposite sign. 
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at the mean temperature again approaches the SC 
value of 47r2 as AT decreases, the difference when 
T, = 90°C and T, = 80°C being about 1%. In that 
case, the SC and TC stream functions [Fig. 7(a)] are 
again almost identical, with the corresponding differ- 
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FIG. 8. (a) Stream function, (b) temperature perturbation, 
(c) (vertical) liquid velocity for onset mode of a helium/water 
vapour mixture when T, = 90°C Tb = 20°C and L/H = 1. 
Solid lines correspond to the two-component model and 
dashed lines to the analogous single-component model. In 
(b) and (c), contour values on the left and right are of 
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FIG. 9. Critical Rayleigh number evaluated at the mean tem- 
perature for nitrogen/water vapour as a function of L/H for 
the first 5 horizontal wave numbers when (a) T,, = 90°C 
T,, = 80°C and (b) Tb = 9O”C, T, = 20°C. Solid lines cor- 
respond to the two-component model and dashed lines to 

opposite sign. the analogous single-component model. 

ence in the temperature perturbation [Fig. 7(b)] being 
more pronounced. The temperature perturbation in 
Fig. 8(b) for T, = 90°C and Tb = 20°C [and to a lesser 
extent in Fig. 7(b)] and the circulation are skewed 
towards the top for the same reason that they are 
skewed the other way in the N,/water vapour mixture. 

For the He/water vapour mixture, a comparison of 
Figs. 7(c) and 8(c) shows that, for given T,, the liquid 
velocity increases as T, decreases. In that case, a given 
temperature and the corresponding condensation of 
vapour occurs higher in the container, resulting in a 
greater difference between gravity and capillary 
forces ; liquid velocities are therefore larger. 

The TC model can be used to consider a tem- 
perature range which straddles a density minimum, 
but it is not then appropriate to compare those results 
with an SC model based on the usual linear density 
variation (i.e. constant dp/dT). In a subsequent paper, 
such results will be compared with an SC model based 
on a quadratic variation around the density minimum. 

L/H 
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The TC and SC values of Ra,, evaluated at the mean 
temperature for the N,/water vapour mixture, are 
compared in Fig. 9 as functions of the aspect ratio 
L/H for the first 5 horizontal wave numbers. Results 
for the He/water vapour mixture are similar and are 
not shown. From Fig. 9(a), we see that, when 
Tb = 90°C and T, = 8O”C, the SC and TC modefs 
predict the same number of convection modes (i.e. the 
same value of n minimises Ra, at given L/H), except 
perhaps at values of L/H very near those at which the 
number of convection modes is changing. However, 
when r, = 90°C and T, = 20°C (i.e. ATis larger), the 
predicted number of SC and TC convection modes 
differs at a number of values of L/H. For example, 
when L/H = 1.3, the SC and TC models predict 1 
and 2 circulation modes, respectively. Similarly, when 
L/H = 2.3, the corresponding number of modes is 2 

and 3, respectively. 
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CONVECTION NATURELLE DES MELANGES GAZ-VAPEUR DANS UN MILIEU POREUX 

Rbum&Un modele g deux composants de la convection naturelle des melanges gaz-vapeur est d&it en 
y introduisant la variation des proprietes du meIange en fonction de la temperature. L’attention est port&e 
sur un lit fixe bidimensionnel avec des plans isothermes au-dessus et au-dessous et des parois laterales 
isolees ; on considere des melanges azote-vapeur d’eau et helium-vapeur d’eau. Quand la densite du melange 
est une fonction monotone de la temperature et la difference de temperature est petite (N lO’C), les valeurs 
prbdites du nombre de Rayleigh critique (Ra,), les modes de convection, la distribution de vitesse et de 
temperature s’accordent bien (l--2% pour Ra,) avec les valeurs correspondantes d&iv&es dun modele 
analogue a un seul composant base sur les proprittes evalutes g la temperature moyenne ; on montre aussi 

la difference croissante entre ces valeurs quand la difference de temperature augmente. 

NATURLICHE KONVEKTION VON GAS/DAMPFGEMIS~~~N IN 
EINEM PORGSEN MEDIUM 

Zusammenfassung-Ein Zweikomponentenmodell der natiirlichen Konvektion von Gas/Dampfgemischen 
wird beschrieben, in dem die Temperaturabhlngigkeit der Gemisch-Stoffeigenschaften enthalten ist. Beson- 
dere Aufmerksamkeit wird einem zweidimensionalen Festbett mit einer isothermen Deck- und Bodenplatte 
und WarmegedSmmten Seitenwgnden gewidmet; die Gemische Stickstoff/Wasserdampf und Helium/ 
Wasserdampf werden untersucht. Wenn die Gemischdichte eine monotone Funktion der Temperatur 
ist und eine geringe Temperaturdifferenz (2 10 K) vorliegt, stimmen die vorhergesagten kritischen Rayleigh- 
Zahlen (&), das Konvektionsbild, die Str~mungs- und die Temperatu~erteilung (l-Z% in RaJ gut mit 
den dazugehiirigen Werten iiberein, die aus einem analogen ~inkom~nentenmodell hergeleitet wurden, 
bei dem die Stoffwerte iediglich bei der mittleren Temperatur berechnet wurden; bei ansteigender Tem- 

peraturdifferenz werden die Abweichungen zwischen den genannten Werten ebenfalls gr6Ber. 
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ECTECTBE~HA~ KOHBEK~~~ rA3~~APOBbIX CMECEFf B ~OP~CTO~ CPEfiE 

AHHOTaUHn-OnMCblBaeTC~ L,ByXKOMnOHeHTHa,l MOAeJIb eCTeCTBeHHOii KOHBeKUIln I-a30-IlapOBbiX 

CMeCeti, B KOTOpOit yW,Tb,BaeTCR TeMnepaTypHan JBBHCAMOCTH CBOkTa CMCCN. PaCCMaTpUBaeTCP LlBy- 

MepHblii WIOTHblti CJlOti C n30TepMHYeCKOI% BepXHeii W HnxHefi IUlaCTnHaMn n n30JlWpOBaHHbIMti 60KO- 

BblMW CTeHKaMn. I/lCCJ,eIZOBaHbI CMeCn a30T-EOfiSHOii nap n re,E&-BO&4HO8 nap. B CJEyYae, KOrE% 

IlJ,OTHOCTb CMeCH FiBJZReTCR MOHOTOHHO~ +yHKUYr& TeMuepaTypb~ n pa3HOCTb TeMnepaTyp M&!,a 

1% IOT), pacc5nTaHUbIe 3HaveUnK KpaTnrecKoro wcna P3ner(Rn,), pe*ii~b~ KoHBeKuw, pacnpenene- 
HllR IlOTOKa n TeMllepaTypbr XOpOmO COrnaCy",TCK (1-274 &I,) C COOTBeTCTByKWkiMR 3HaYeHARMn, 

UOJIy'leHHbIMU 113 aHE,JIOrR'lHO~ O~HOKOM~OHeHTHOti MOllenA, UapaMeTpbI KOTOpOii OUeHeHbl IlpH 

cpenwefi TeMnepaType. IIoxa3aH0, YTO c POCTOM pa3HocTn Terdnepa-ryp BospacTaeT pa3nnwe Mewy 
3Ha'feHnRMU 3TUX Bc,W'tllH. IIOJIy=ieHHbIMH C fIOMOlUb!O OUHOKOMnOHeHTHOfi n ~ByXKOMuOHeHT~O~ 

Moneneii. 
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